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ABSTRACT 

Some results that have been obtained in thestudy of strongly and weakly ergodic 
behavior of non-homogeneous stochastic kernels are generalized to the case of 
non-negative kernels. The first generalization simply involves extending the 
definitions of weakly and strongly ergiodc behavior to the case of non-negative 
kernels and using the ergodic coefficient which was first defined for stochastic 
kernels by Dobrushin and extended to non-negative kernels by Blum and 
Reichaw. It happens that this straightforward extension excludes many cases 
of non-negative kernels which do exhibit a type of ergodic behavior. In order to 
study these cases a definition of L1 weakly and strongly ergodic behavior is 
given in which normalizing by constants is allowed. Sufficient conditions for 
these types of ergodic behavior are given. 

. 

In this paper we consider the ergodic behavior of sequences of  non-negative 

kernels and seek to generalize some results that have been obtained in the study 

of  strongly and weakly ergodic behavior of non-homogeneous Markov chains. 

Let ( S , ~ , # )  be a a-finite measure space and let {M~(x,y)} be a sequence of  

non-negative, measurable functions defined on S x S. We consider only those 

sequences for which superpositions M~,m+,(x,y) defined by 

exist for all m and n. Such functions M(x, y) will be referred to as non-negative 

kernels. I f  it is also true that fs (M(x, y)lt(dy) = 1 for all x ,  we call the kernel 

stochastic. 
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In addition to the assumption of the existence of superpositions of these kernels, 

we assume that the kernels are sufficiently well behaved to assure that for all 

finite measures ~ on (S ,~ )  the function if(y) defined by 

g(y) = f M.(x, y)((dx) 

is integrable for all n. (Henceforth, integration will be assumed over S unless 

otherwise indicated.) 

DEFINITION 1.1. If  (o is a finite measure on (S ,~0,  then (o will be called a 

starting distribution or starting measure. If, in addition, (o(S) = 1, then (o 

will be called a starting probability distribution. If  ~o is absolutely continuous 

with respect to # ,  then fo(x) = d(o(x)/d#(x) will be called the starting density. 

If, in addition, ffo(x)p(dx) = 1, then fo(x) will be called a starting probability 

density. 

For (o(X) and ~/o(X) starting distributions, define f,. , .(y)= fMm,.(x,y)(o(dx ) 
and g,.,.(y) = fMm,.(x,y)tlo(dx). 

DEFINITION 1.2. A sequence of non-negative kernels {M.} will be called 

weakly ergodic if for all m, 

(1.1) sup f I f.,,.(Y) - gm,.(y) ll~(dy) ~ 0 as n ~ oo. 
~o,~o J 

DEFINITION 1.3. A sequence of  non-negative kernels (M.} will be called strongly 

ergodic if there exists a function q(y) such that for all m, 

f I fm,.(Y) - q(Y)] 12(dy) ~ 0 s u p  a s  /l o o .  
Co J 

In studying the ergodic behavior of non-negative kernels it is useful to intro- 

duce the ergodic coefficient which was first defined for stochastic kernels by 

Dobrushin [3] and extended to non-negative kernels by Blum and Reichaw [1]. 

DEFINITION 1.4. If  M(x,y)  is a non-negative kernel, the ergodic coefficient 

6(M) is defined to be 

(1.2) b(M) = sup f [ M ( x ,  y) - M(z, y)] + #(d y) . 
x ~ z  d 

For the case of stochastic kernels P.(x, y) where all starting distributions are 

taken to be starting probability distributions, it is known [6] that {P.} is weakly 

ergodic if and only if  t~(P=,.) -~ 0 as n ~ oo for all m. In extending this result 
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to non-negative kernels, the convention of requiring all starting distributions to 

be starting probability distributions will be retained. In this case we obtain the 

following theorem. 

TIaEOREM 1.1. Let {M,} be a sequence of non-negative kernels, t~(Mm,~)~ 0 
as n ~ co for all m if and only if 

(1.3) fE fs Mm'n(x'Y)[(~ t/~ ~ O  

uniformly in E, ~o, and ~io as n ~ oo for all m. 

PROOF. Assume t$(Mm,n) -'* 0 as n ~ oo for~ all m. Using Inequality I of [ l l  

with ~ = ( o ( S ) -  r/o(S) = 0 we obtain 

f r  fs  M""(x 'Y)[(~176 <- ~(Mm'") [ (~176 --< t~(M.,.). 

The right-hand side goes to zero uniformly in ~o, r/o, and E as n ~ oo for all m.  

Conversely, assume f E fs M,.,(x, y) I(o(dx) - ~lo(dx)]l~(dy) ~ 0 uniformly in 

E ,  (o, and ~/o as n ~ oo for all m. Let (o be the starting probability distribution 

which assigns probability measure one to the point x l .  Let ~/o be the starting 

probability distribution which assigns probability measure one to the point x2. 

Let E = {y: fMm n(x,y)[(o(dx)-~lo(dx)] > 0}. For this choice of (o,r/o, and E 

it follows that 

f [Mm.n(xl, Y) - Mm,,(x2, Y)]+#(dY) ~ 0 for all m. 

However, since this holds uniformly in (o, r/o, and E we obtain 

supxl.~2 f[Mm,~(xl, Y) - Mm,~(x2, Y)] +It(dY) ~ 0 as n ~ oo for all m so t~(M,,n) --* 0 

as n ~ oo for all m.  | 

REMARK. Theorem 1.1 gives conditions for weak ergodicity since (1.1) is 

equivalent to (1.3). 

REMARK. Inequality I in [1] is stated for starting distributions that are ab- 

solutely continuous with respect to St. The proof of the same inequality for finite 

signed measures as used above is straightforward. 

The Blum and Reichaw inequalities are also used in [1] to obtain some suffi- 

cient conditions for strong ergodicity of non-negative kernels. However, for non- 

negative kernels one should not stop here, since there are many well-behaved, 

non-negative kernels that do not satisfy these restrictive definitions of weak 
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and strong ergodicity. Consider, for example, Mm = (~ 2) which yields a homo- 

geneous chain such that if  (0 = (�89 �89 then ( o M 1 M 2 . . .  Mn = fl,n -~ (0% oo) as 

n ~ oo. It is easy to see that if some norming is used at each stage, the sequence 

becomes ergodic. In fact, if fm,n(J) denotes the j th  component Of fm,~ consider 

f *~ ( j )= fm ,n ( j ) / ( fm ,~ (1 )+ fm,~ (2 ) ) ,  j =  1,2. Then, for the above example, 

fm*.~(�89189 and ~2= 11 * " * " f.~,~(J) - 9m,.(J)[ ~ 0 as n -~ oo for all m and for all 

starting probability measures (o and t/o . This leads to a revised definition of weak 

and strong ergodicity which will use norming to keep f*n bounded away from 

zero and infinity. Since the normalizing factor may depend on (o, m, and n,  

a more general approach is to divide by a constant k ( ( o , m , n ) .  Define 

f~*.(Y) = fm, . (Y)/k((o,  m,  n) and * gm,n(Y) = gm,n(Y)/k(rlo, m,  n) . 

We note that Conn [2] gave conditions for I(fmAy)/f. fm,.) - (gm,n(Y)/fgm,n)] 

tO go to zero. This kind of behavior will be called pointwise weakly ergodic. 

Conn also found conditions for pointwise strongly ergodic behavior. To distinguish 

this and the stochastic case from the ergodic behavior described here, we use 

the terms normalized L 1 weakly ergodic (NLlWE) and normalized L~ strongly 

ergodic (NL1SE). 

DEFINITION 1.5. Let {M~(x,  y)} be a sequence of non-negative kernels and let 

cA/be the family of all starting probability measures ~. The sequence {M~} will 

be called NLlWE if for each pair ~o, ~/o ~ Jg/there exist sequences of positive 

constants k(~o, m, n) and k(~/o, m, n) such that for all m,  

rls..,.(y) * I sup - -  g m , n ( Y )  #(dy )  -~ 0 as n -~ oo 
r o,~lo E dl J 

while ffm*~(y)#(dy)"r O. (This last condition is included to ensure that the 

norming constants are not chosen so large that both f * ,  and * �9 gm.n go tO zero.) 

DEHNITION 1.6. A sequence of non-negative kernels (Mn(x ,  y)} will be called 

NL1SE if there exists a function q(y)  such that for every starting distribution 

~o there exists a sequence of positive constants k(~o, m, n) such that 

r I f * , , , (Y)  - q(Y) I p(dY) ~ o as n sup oo 
J 

for all m.  
In order to use results known for ergodic behavior of stochastic kernels, the 

non-negative kernels will be transformed into stochastic kernels. Eigenfunctions, 

if  they exist, can be used for making such a transformation. 
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Let ~ (x )  be a positive right eigenfunction of Mn(x,y) corresponding to the 

eigenvalue 2~ > 0. Then 

(1.4) P~(x, y) = M~(x, y)d~(y)/2~d~(x) 

is a stochastic kernel. This transformation, which was used by Harris [4], will 

be used in the next two sections. 

2. Normalized L1 weak ergodicity 

The following lemmas will be useful in the proof of the main theorem of this 

section. 

LEMMA 2.1. Let g(x) be an integrable function and let h(x) satisfy 
O < l - 8 < h(x) < 1+ ~. Then 

! f g(x)h(x)la(dx) I<= ! f l + f 
PROOF. Writing g(x) = g+(x) - g-(x) and I g(x)] = g+(x) + g-(x)and using 

the bounds on h(x), the proof is straightforward. | 

For further reference, we state the following properties. 

There exist right eigenfunctions tI)~(x) corresponding to 2, > 0 Property I. 

such that: 

Property II. 

weakly ergodic. 

O < b = < O n ( x ) = < B < o o ;  

r , =  sup l ~,(x) I O~_l(x ) 1 satisfies ~ r n < oo. 
n = 2  

The sequence of stochastic kernels {P~(x, y)} defined by (1.4) is 

Property III. The sequence of stochastic kernels {P~(x, y)} defined by (1.4) 

is strongly ergodic. 

LEMMA 2.2. Let {Mn(x,y)} be a sequence of non-negative kernels satisfying 

Properties I and II. Then, given e > 0 and starting distributions ~o and ~/o, 

there are sequences of normalizing constants {dn(8)} and {en(e)} such that for 

n > N ( O ,  

f l f~*n(Y) - gt*~(Y) l l~(dY) < ~. 
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PROOF. Define f , (y)  = fl . ,(Y). Since • ~=2 r~ < oo, it follows 
ao 1 1-I, =2 ( + r~) converges. Hence, given ~ such that 0 < ? < 1 there 

N1 = Nl(~) such that for all M > N: + 1, 

M oo 

(2.1) I-[ ( l + r . )  _~ 1-[ ( l + r . ) < l + y .  
n = N l + l  n = N l + l  

Furthermore, 

355 

that 

exists 

(2.2) 1-I (1 - 1".) > (1 - 1-.) > 1 - y. 
n = N l + l  n = N l + l  

Also, since by Property II {P.} is weakly ergodic, given m and y > 0, there exists 

a n  N 2 = N2(~] ,  m) such that for n _~ N2, 

(2.3) 6(P.,,.) < y.  

Let ? = eb/4, m = N:(y),  and N(0  = N2(y.m). I f  ~o and ~/o are the given 

starting distributions, define {d.} as follows: 

1 if  n < m  f 
(2.4) d. 

A(m,n) ff,,,_i(y)r if n > m 

where A(Lk) k 2 .  = I-[t=~ ~ Define {e.} similarly using g, . - t  instead of f.,_ i.  

Now consider f.(y) for n > N(0 = N2(~', m). Since n > m,  we can write 

f . (y)  = f "" f f,._ ,(zm)M,.(z,., z.,+ ,) ... M.(z. ,  y)p(dz,.) ... it(dz.). 

Using (1.4), this becomes 

: . ( ,  -- f ... f 
[ 2.r z.)P.( z., y) /O.(y) ]ll( dz,.) . . . It( dz.) 

= f... ff,~-dz,.)'~,.(z,.)A(m.n)P,~(z,.,z,~+l)...e.(z.,y) 
{~b(z., + t, "", z.)/~.(y)}l.t(dzm)'" la(dz.) 

where ~(z,. + 1, "", z.) = 1-I;~,. + l~j(z./)/~j- x(Zj). I f  we define 

(2.5) f**l(Y) = f,,,-I(Y)*,,,(Y)/ ff,._,(y)e~,~(y)p(dy) 
and if  we use d, as defined in (2.4), then 
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(2.6) f.*(y) = fn(y)/dn = f ff,;* "'" - l ( z . ) e . ( z . ,  zm+ 1)"" 

en(zn, y) { r  + ~, ..., zn)/'}.O,) }~(dz.) "" ~(dzn). 

A similar expression can be given for O*(Y). Hence 

f [ f.*(y) - O *. (y) l z( d y) 

= f lf f~(z..., z.,y)e(z.+,,....z.),(,z.,...,(,z., I ' ~(y)l~(dy) 

[ f~ '_ , (z . )  - g*~*_ ~(z~)]P. (z . ,  z .+  I) '"  en(zn, y) .  where h(zm,'",zn, y) = ** 

It follows from (2.1) and (2.2) that 1 - ~  ~ ~ _~ 1 + ~, hence (2.1) can be 

applied to give 

(, . ,)  f l r ( ,  - r ( ,  I,(,, ~ f J f [f~*._*,(z,,)- g,,**- ,(z,,,)'lP,n,,,(z,,,, y)lg(dz,,) I 

1 
On(y) I~(dy) 

I ::'_,(z.) - ~."_,(z.)l,...(z.,,> ~,(,z.),(~,). 

Since ** f ~ - t  and g.,*_** were constructed to be starting probability densities, we 

can construct a stochastic kernel by choosing any set A e ~ with 0 < p(A)  < I~(S) 

and defining: 

** ~ f~*-*x(Y) if x ~ A  
Pro- ~(x, y) = / 

L g**x(y) if x ~ A .  

Define P*~*_ 1Pm,n(x, Y) to be fP*.-*l(X, Z)Pm,n(Z, y)#(dz), SO if x ~ A and z ~ A, 

the first term of (2.7) becomes 

(2.8) f l  ** ** 1 P._ ,P.,.(x, y) - P._ ,P.,.(z, Y) I ~ p(dy) 

f ** 1 ] Pro- 1Pm,n(x, Y) ** 2 ** - - Pm_lPm,n(z,y)[/~(dy) = ~(Pm-lPm,~) =<b 

<= ~(P.,.) ~_ --~ 

where the inequalities of  (2.8) follow from the bounds on ~n, properties of the 

ergodic coefficient (see [5]), and inequality (2.3). 
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Now consider the second term of (2.7). It is less than or equal to 

 fft (2.9) ~ f~- 1(z) gm-,k ) I Pro.n( z, Y)It(dz)l~(dY) <-- �9 

Combining (2.8) and (2.9) yields 

f 2~ 2~ ] f:(Y) - g*~(Y) l~(dY) -< T + T = ~" 

It remains to show that d, is positive. If @(x) is an eigenfunction of M(x, y) 
and 0 < b < @ ( x ) = < B < o o ,  then 

(2.10) 2b < 2@(x) = f  M(x, y)r 

Since 2 is positive, using equation (2.10) we see that SM(x,y)p(dy) ~_ 2bib > O, 
from whence it follows that 

= ff 
> 2rib 
= B 

fn- l(x)Mn(x, y)It(dx)p(dy) 

f fn- l(x)It(d x) 

> A(1, n) (b/B)'~o(S) > O. 

Hence d, (and likewise e,) must be positive. | 

Note that in the proof, the choice of N(e) did not depend on either Co or )7o- 

THEOREM 2.1. I f  {M,(x,y)} is a sequence of non-negative" kernels satisfying 
properties I and II, then {11//,} is normalized L 1 weakly erflodic. 

PRoof. Let Co and ~/o be any starting distributions. It suffices to consider 

the case m = 1, since for any other m the arguments are identical. 

Let {e,} be a sequence of constants decreasing to zero. By Lemma 2.2, for each 

i there exist sequences of constants {dn(e,)} and {en(ei)} such that n > N(e,) ~. 
y l f : ( y )  - g*(y) l~(dy) < e,. Without loss of generality, assume that {N(ei)} 

forms an increasing sequence. Since (N(8,)} do not depend on (o or r/o, define 

tan(el) n <- N(e2) 
k(~o,l,n) = { tan(e,) N(8,) < n -< N(e,+l) 

and define k(t/o, 1, n) similarly using {en(8~)}. These sequences of constants can 

be used to show that {M,} is NL1WE directly from Definition 1.5. If 8 > 0 is 

given, there is some i such that 8, < e, and for any n > N(e~), S I f : ( y )  - g*~(y) Jt~(dy) 
< el < e independently of the choice of ~o and r/o. 
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It remains to show that f f * (y )# (dy ) -~  O. From (2.6) we have the follow- 

ing inequalities where m = NI(~). 

p(dzm)... #(dz,)#(dy) 

1 (I O-r )f f**  . . . .  f:_ z,+ O'"P.(z,, y)#(dz.)... 
>= B j=m+l 

1 
r I  ( 1 - r g ) >  1 f i  ( 1 - r j ) >  l - - T > 0  for all n. I 

B j=m+l = B j=m+t = B 

REMARK. Since eigenfunctions satisfying Property I(i) do not always exist, 

we note that another means of transforming the non-negative kernels into sto- 

chastic kernels can be used. 

Property I'. There exist functions Gn(y ) such that: 

i O<b<= G n ( y ) < B < o o ;  

ii I~(x) = ~M,(x,y)G,(y)p(dy) exists and is positive for all x; 

iii there exists a sequence of constants  {Pn} such that 

] I ,(x) 1 [satisfies ~ r, < oo. 
r n = sup i PnGn-t(x) ' n=2 

X 

Property II'. The sequence of stochastic kernels defined by 

R,(x,  y) = M~(x, y)G~(y)/In(x) 

is weakly ergodic. 

Note that if {G~(y)} are right eigenfunctions and if p, is taken to be 2,, then 

Properties I' and II' reduce to Properties I and II. 

THEOREM 1.2. I f  {M~(x, y)} is a sequence of non-negative kernels satisfying 

Properties 1' and I1 ' ,  then {M,} is NLxWE. 

PROOF. The proof of this theorem is similar to that of Theorem 2.1. 

3. Normalized L 1 strong ergodicity 

We begin with two lemmas which will be useful in proving the main theorem 

of this section. 

LEMMA 3.1. I f  Property I(ii) is satisfied, then given e > 0 there is some 

N = N(e) such that for all n > N ,  supl~b(zN,...,z~) -- 11 < 5, where the su- 

premum is taken over all points, (zN, z~+l, . . . ,zn),  in xi~=NS. 
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PROOF. Straightforward and left to the reader. 
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LEMMA 3.2. Let {Mn(x,y)} be a sequence of  non-ne#ative kernels satis- 

f y in9  Properties I and III. Then there is a function q(y) such that, 9iven e > 0 

and a startino distribution ~o, there is a sequence of  normalizin9 constants 

{dn(e)} such that for  n >__ N(e), Ylf.*(Y) - q(y)[~(dy) < ~. 

PROOF. It follows from Property I that the sequence {On(y)} is a Cauchy 

sequence and hence has a limit, say ~(y).  In fact O,(y) --. O(y) uniformly. From 

Property III, {P.(x, y)} is strongly ergodic, hence there exists a constant kernel 

Q(x, y) = Q(y) to which P,,,,(x, y) converges for all m. Now define q(y) = Q(y)/rb(y). 

Write 

f.(y) =ff._~(z.)Mm,.(z.,y)~(dz.) 
where m = N(b~/3) is determined as in Lemma 3.1. Def ine {d.}  as in (2.4) and 

f ~ x ( Y )  as in (2.5). Then for n > m ,  

f~(y)  = f ,(y)/d,  = 

f ... f f~**xf(zm)P,.(Zr,, z,.+ 1)"" P,(z., y) {q~(z,,+ 1,.. . ,  z.)/O,(y)}It(dz,,)"" #(dz,).  

Hence we can write 

f l f*(Y) -- q(y) ll~(dy) 

= f I f.*(Y) - Q(y)/C~(y)lt~(dy) 

<: f jf ff*m*l(z.)Pm(Zm, Z.+O"" P.(zn, y) ([~b(z,.+ 
(3.1) 

+f 

+f 

l, "", zn)-- 1J/On(y)} 

�9 #(dzm)"" lt(dz,) [ p(dy) 

I f  "'" f f*-*l(z')P"(z"z'+ l)"" P"(z"'Y)/~P(Y)It"(dzm)... #(dzn) 
- Q(y)/~n(y) I lt(dy) 

I Q(y)/~.(y) - Q(y)/O(y)]l~(dy). 

Consider each term of (3.1)�9 The first term is less than or equal to 
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f f**-l(z,~)Pm(zm, Zm+ 1)"" e,(z,, Y) I q~(Zm + 1, '" ,  zn) -- 1 I/~pn(y)lt(dz~... 

~,(dz.)~,(dy) 

_ {sup I,/,(z.+,, . , .z=)-1 I/b} f ... f f:*t(z,~)Pm(z,,,,z,+,)... P,(z,, y)#(dz,) 
�9 .. ~(dz.)~(dy) 

= supl~(z.+,, . . . , z . ) -  1 l/b ~_ bd3"b = 813, 

Pro- l(x, y) where the last inequality follows by the choice of m. Next define ** 

= f * * l ( Y )  for all x. Then the second term of (3.1) can be written 

fl" f Pro- 1P,~.~( x, Y) - Q(Y) II~,(y)~(dy) < [ P** ,em.,(x, y) - Q(y) I #(dy)lb 

= l i P ' *  ~ _ . - 1 - . o  - ~. II/b ~ l I P - , -  0 II/b, 
where the norm is that which is used in 15]. The last inequality is easy to verify 

using the properties of this norm and the fact that Q is a constant kernel. By 

strong ergodicity of {Pn}, we have II P . ~  - o. l!/b _-< 8/3 for n ~_ g , ( m ,  b , 8 ) .  

Finally,  since @,(y) converges uniformly to @(y), if n > Nz(b,8) then 

I@,(Y) - @(Y) I < b28/3. In this case, 

f Q(Y) I 1 1 ~(y)  ~(y) [ t~(dy) = f Q(y) Ie~(y) - On(y)[/~(y)e&(y)~(dy) 

f O(y)~(dy) = 8/3. < 8/3 

Hence for n _>- max(N 1, N2), 51A*(Y) - q(Y) l~(dY) < e. | 

Tm~OREM 3.1. I f  {M~(x,y)} is a sequence of non-ne#ative kernels satisfyina 
Properties I and II, then {Mn} is normalized L 1 stron#ly er#odic. 

PROOF. The proof follows from Lemma 3.2 in the same way that the proof 

of Theorem 2.1 follows from Lemma 2.2. 

COROLLARY 3.1. I f  {M~(x,y)} is a sequence of non-negative kernels satis- 
fying Property I and in addition, correspondin# to 2~ there are non-negative 

integrable left ei#enfunctions ~(y)  such that 

f l ~b,(y) - ~b(y) ]/t(dy) ~ 0 (3.2) 

and if the stochastic kernels {P.} satisfy 6(P.) < fl < 1, then the sequence {M.} 

is normalized L 1 strongly ergodic. Further q(y) = ~(y). 
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PgOOF. It is easy to verify that if ~k,(y) is a left eigenfunction for M,(x,y)  
corresponding to 2,,  then ~,(y)~,(y) is a left eigenfunction for P,(x, y) corres- 

ponding to the eigenvalue 1. Furthermore, we can show that j'[ ~k~(y)t~,(y) 
- d/(y)~(y)l#(dy ) ~ O, since 

f [ d/n(y)~,,(y ) -- d/(y)C~(y) I It (dy) 

(3.3) _~ f 

< B  

I d/,,(y)t~,,(y) - d/(y)~,,(y) I #(dy) + f [  d/(y)~,,(y) - d/(y)d~(y) I I't(dY) 

fl d/(y)l#(dy) + f ~(y)I ~ , ( y ) -  ~y)lit(dy). 

The first term of (3.3) goes to zero by condition (3.2). Since ~,(y) converges 

uniformly to cl~(y) and since r is integrable, the second term of (3.3) also goes 

to zero. 

In view of the above remarks, Corollary 2.2 of Madsen and Isaacson [7"1 

holds, hence {P,} must be strongly ergodic, and therefore Theorem 3.1 ap- 

plies. We also know from [7, Cor. 2.2] that P,(x,y) ~ ~(y)t~(y) = Q(y). 
Hence in this case, 

q(y) = Q(y)[C~(y) = d/(y). I 

REMARK. Property I(ii) imposed on the ~ ,  sequence is extremely strong. In 

an attempt to justify the use of this condition we give an example which shows 

the non-sut~ciency of a weaker assumption. In particular, this example shows 

that Property I(ii) can not be replaced 

sup~ I (~.(x)/O.+ l(x)) - 1 ] -~ O. 

Define 

M2n+l = 

1 
2 n + l  

1 
1 (2n + 1) ~ 

1-1- 

by the weaker condition that 

111 (2n + 1) (2n + 1) ~r 2n + 1 

1 
2 n + l  

M2n 

1 
2n 

1 1 1 

(2n) § 

1 
2n 1 + (2n) ~ 2n (2n)n 
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It can be shown that both of these matrices have an eigenvalue 1 and that the 

corresponding eigenvectors are q)2,+1 = (1 + 1/(2n + 1) § 1)' and q~z~ = 

(1,1 + 1/(2n)~) ' . Also note that supx l ~ , ( x ) / ~ , + l ( x ) )  - 11 = 1/n § ~ 0 as n --* oo 

but Property I(ii) fails. 

Define P,,(i,j) = M,,(i , j)~,,(j)/~,,(i) so 

= 1 n 

1 
n n 

Now J(P,) = 1 - 2 / n  so J(Pm,n) "~ r I  ~,=m+l J(Pk) --' 0 and hence {Pn} is weakly 

ergodic. In fact, ~b, = (�89 �89 is the left eigenfunction for all n so {P,} is strongly 

ergodic 17]. 

Now consider (1,1)MnM~+I ""M~+k and (1,1)M,M,+I ... M,+t+l  for n odd 

and k even. The first product yields a vector with a very large term in the second 

coordinate and a term near zero in the first coordinate. The second product 

yields a vector with the large term in the first coordinate. This large term, which 

goes to infinity as k --, oo for all n,  continues to alternate between the first and 

second coordinate. Hence the only normalization that will reduce (1, 1)M,.,+k 

to a constant vector is a normalization that brings everything to zero. Therefore 

{M,} is not strongly ergodic. 

This example shows that one can not replace Property I(ii) with the weaker 

assumption that supx [ ( ~ , ( x ) / ~ , , + l ( x ) ) -  11--, 0 in the above theorems. 
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